SUMMARY OF PRODUCT CHARACTERISTICS ## 1 NAME OF THE MEDICINAL PRODUCT Lipitor 10 mg Lipitor 20 mg Lipitor 40 mg Lipitor 80 mg ## 2 THERAPEUTIC INDICATION # Hypercholesterolaemia LIPITOR is indicated as an adjunct to diet for reduction of elevated total cholesterol, LDL-cholesterol, apolipoprotein B, and triglycerides and to increase HDL-cholesterol in patients with primary hypercholesterolaemia including familial hypercholesterolaemia (heterozygous variant) or combined (mixed) hyperlipidaemia (corresponding to types IIa and IIb of the Fredrickson classification) when response to diet and other nonpharmacological measures is inadequate. LIPITOR is also indicated to reduce total-C and LDL-C in patients with homozygous familial hypercholesterolaemia as an adjunct to other lipid-lowering treatments (e.g. LDL apheresis) or if such treatments are unavailable. # Pediatric Patients (10-17 years of age) LIPITOR is indicated as an adjunct to diet to reduce total-C, LDL-C, and apo B levels in boys and postmenarchal girls, 10 to 17 years of age, with heterozygous familial hypercholesterolemia if after an adequate trial of diet therapy the following findings are present: - a. LDL-C remains ≥ 190 mg/dL or - b. LDL-C remains ≥ 160 mg/dL and: - there is a positive family history of premature cardiovascular disease or - two or more other CVD risk factors are present in the pediatric patient ## Prevention of cardiovascular disease Prevention of cardiovascular and/or cerebrovascular events such as MI or stroke: as an adjunct to correction of other risk factors such as hypertension in patients with three or more additional risk factors or diabetes with one additional risk factor. In patients with clinically evident coronary heart disease, LIPITOR is indicated to: Reduce the risk of non-fatal myocardial infarction Reduce the risk of fatal and non-fatal stroke Reduce the risk for revascularization procedures Reduce the risk of hospitalization for CHF Reduce the risk of angina # 3 DOSAGE AND ADMINISTRATION **General** - Before instituting therapy with LIPITOR, an attempt should be made to control hypercholesterolemia with appropriate diet, exercise and weight reduction in obese patients, and to treat underlying medical problems. The patient should continue on a standard cholesterol lowering diet during treatment with LIPITOR. (see National Cholesterol Education Program (NCEP) Guidelines, summarized in Table 1). The usual starting dose is 10 mg or 20 mg once daily. The dosage range of LIPITOR is 10 to 80 mg once daily. Starting and maintenance doses should be individualized according to baseline LDL-C levels, the goal of therapy, and patient response. Adjustment of dosage should be made at intervals of 4 weeks or more. The maximum dose is 80 mg once a day. Doses may be given at any time of day with or without food. After initiation and/or upon titration of LIPITOR, lipid levels should be analyzed within 2 to 4 weeks and dosage adjusted accordingly. Therapy with lipid-altering agents should be a component of multiple-risk-factor intervention in individuals at increased risk for atherosclerotic vascular disease due to hypercholesterolemia. TABLE 1. NCEP Treatment Guidelines: LDL-C Goals and Cutpoints for Therapeutic Lifestyle Changes and Drug Therapy in Different Risk Categories | Risk Category | LDL Goal
(mg/dL) | LDL Level at Which to
Initiate Therapeutic
Lifestyle Changes (mg/dL) | LDL Level at Which to Consider
Drug
Therapy (mg/dL) | |--|---------------------|--|---| | CHD ^a or CHD risk
equivalents
(10-year risk >20%) | <100 | ≥100 | ≥130
(100-129: drug optional) ^b | | 2+ Risk Factors
(10-year risk ≤20%) | <130 | ≥130 | 10-year risk 10%-20%: ≥130
10-year risk <10%: ≥ 160 | | 0-1 Risk factor ^c | <160 | ≥160 | ≥190
(160-189: LDL-lowering
drug optional) | ^a CHD, coronary heart disease After the LDL-C goal has been achieved, if the TG is still ≥200 mg/dL, non HDL-C (total-C minus HDL-C) becomes a secondary target of therapy. Non-HDL-C goals are set 30 mg/dL higher than LDL-C goals for each risk category. Prior to initiating therapy with LIPITOR, secondary causes for hypercholesterolemia (e.g., poorly controlled diabetes mellitus, hypothyroidism, nephrotic syndrome, dysproteinemias, obstructive liver disease, other drug therapy, and alcoholism) should be excluded, and a lipid profile performed to measure total-C, LDL-C, HDL-C, and TG. For patients with TG <400 mg/dL (<4.5 mmol/L), LDL-C can be estimated using the following equation: LDL-C = total-C - (0.20 x [TG] + HDL-C). For TG levels >400 mg/dL (<4.5 mmol/L) this equation is less accurate and LDL-C concentrations should be determined by ultracentrifugation. LIPITOR has not been studied in conditions where the major lipoprotein abnormality is elevation of chylomicrons (Fredrickson Types I and V). # NCEP (National Cholesterol Education Program) Pediatric Panel Guidelines Classification of cholesterol levels in pediatric patients with a familial history of hypercholesterolemia or premature cardiovascular disease is summarized below: | Category | Total-C (mg/dL) | LDL-C (mg/dL) | |------------|-----------------|---------------| | Acceptable | <170 | <110 | | Borderline | 170-199 | 110-129 | | High | ≥200 | ≥130 | ^b Some authorities recommend use of LDL-lowering drugs in this category if an LDL-C level of < 100 mg/dL cannot be achieved by therapeutic lifestyle changes. Others prefer use of drugs that primarily modify triglycerides and HDL-C, e.g., nicotinic acid or fibrate. Clinical judgement also may call for deferring drug therapy in this subcategory. ^c Almost all people with 0-1 risk factor have 10-year risk <10%; thus, 10-year risk assessment in people with 0-1 risk factor is not necessary. # <u>Primary Hypercholesterolaemia including familial hypercholesterolaemia (heterozygous variant) or combined (mixed)</u> <u>hyperlipidaemia (Fredrickson Types IIa and IIb)</u> Patients should be started with LIPITOR 10 mg daily. A therapeutic response is evident within two weeks, and the maximum response is usually achieved within four weeks. The response is maintained during chronic therapy. Doses should be individualized and adjusted every 4 weeks to 40 mg daily. Thereafter, either the dose may be increased to a maximum of 80 mg daily or a bile acid sequestrant may be combined with 40 mg LIPITOR. # Homozygous Familial Hypercholesterolaemia The dosage of LIPITOR in patients with homozygous FH is 10 to 80 mg daily. LIPITOR should be used as an adjunct to other lipid-lowering treatment (e.g. LDL apheresis) in these patients or if such treatments are unavailable. In a compassionate-use study of patients with homozygous familial hyper-cholesterolaemia, most patients responded to 80mg of atorvastatin with a greater than 15% reduction in LDL-C (18%-45%). # Severe dyslipidemias in Pediatric Patients - Experience in pediatrics is limited to a small number of patients (age 4-17 years) with severe dyslipidemias, such as familial hypercholesterolemia. The recommended starting dose in this population is 10 mg of LIPITOR per day. The dose may be increased to 80 mg daily, according to the response and tolerability. Doses should be individualized according to the recommended goal of therapy (see **section 2 Therapeutic indications, and section 9.4 Pediatric Use**). Adjustments should be made at intervals of 4 weeks or more. ## Prevention of cardiovascular or cerebrovascular events In the primary prevention trials the dose was 10 mg/day. Higher dosages may be necessary in order to attain (LDL-) cholesterol levels according to current guidelines. ### Use in Patients with Hepatic Insufficiency (See sections 5 Contraindications and 6 Warnings and Precautions) # Dosage in Patients with Renal Insufficiency Renal disease has no influence on the plasma concentrations or on the LDL-C reduction with LIPITOR; thus, no adjustment of dose is required. (see **section 6 Warnings and Precautions**). # Dosage in Patients Taking Cyclosporine, Clarithromycin, Itraconazole, or Certain Protease Inhibitors In patients taking cyclosporine or the HIV protease inhibitors (tipranavir plus ritonavir) or the hepatitis C protease inhibitor (telaprevir), therapy with LIPITOR should be avoided. In patients with HIV taking lopinavir plus ritonavir, caution should be used when prescribing LIPITOR and the lowest dose necessary employed. In patients taking clarithromycin, itraconazole, or in patients with HIV taking a combination of saquinavir plus ritonavir, darunavir plus ritonavir, fosamprenavir, or fosamprenavir plus ritonavir, therapy with LIPITOR should be limited to 20 mg, and appropriate clinical assessment is recommended to ensure that the lowest dose necessary of LIPITOR is employed. In patients taking the HIV protease inhibitor nelfinavir or the hepatitis C protease inhibitor boceprevir, therapy with LIPITOR should be limited to 40 mg, and appropriate clinical assessment is recommended to ensure that the lowest dose necessary of LIPITOR is employed (see section 6.1 Warnings and Precaution -Myopathy and Rhabdomyolysis and section 8 Drug Interactions). ## Use in Elderly Efficacy and safety in patients older than 70 using recommended doses is similar to that seen in the general population. (see section 9.5 Use in Specific Populations- Geriatric Use). ## 4 DOSAGE FORMS AND STRENGTHS LIPITOR tablets are white round, film-coated, and are available in four strengths (see Table 1). **Table 1: LIPITOR Tablet Strengths and Identifying Features** | Tablet Strength | Identifying Features | | |------------------------|---|--| | 10 mg of atorvastatin | "10" on one side and "ATV" on the other | | | 20 mg of atorvastatin | "20" on one side and "ATV" on the other. |
-----------------------|--| | 40 mg of atorvastatin | "40" on one side and "ATV" on the other | | 80 mg of atorvastatin | "80" on one side and "ATV" on the other | #### 5 CONTRAINDICATIONS - Active Liver Disease, Which May Include Unexplained Persistent Elevations in Hepatic Transaminase Levels - Hypersensitivity to Any Component of This Medication [listed in section 11 (Description)] - **Pregnancy** [see Use in Specific Populations (9.1)]. - **Lactation** [see Use in Specific Populations (9.2)]. #### **6 WARNINGS AND PRECAUTIONS** ## 6.1 Myopathy and Rhabdomyolysis LIPITOR may cause myopathy (muscle pain, tenderness, or weakness with creatine kinase (CK) above ten times the upper limit of normal) and rhabdomyolysis (with or without acute renal failure secondary to myoglobinuria). Rare fatalities have occurred as a result of rhabdomyolysis with statin use, including LIPITOR. ## Risk Factors for Myopathy Risk factors for myopathy include age 65 years or greater, uncontrolled hypothyroidism, renal impairment, concomitant use with certain other drugs, and higher LIPITOR dosage [see Drug Interactions (7.1)]. # Steps to Prevent or Reduce the Risk of Myopathy and Rhabdomyolysis LIPITOR exposure may be increased by drug interactions due to inhibition of cytochrome P450 enzyme 3A4 (CYP3A4) and/or transporters (e.g., breast cancer resistant protein [BCRP], organic anion-transporting polypeptide [OATP1B1/OATP1B3] and P-glycoprotein [P-gp]), resulting in an increased risk of myopathy and rhabdomyolysis. Concomitant use of cyclosporine, gemfibrozil, tipranavir plus ritonavir, or glecaprevir plus pibrentasvir with LIPITOR is not recommended. LIPITOR dosage modifications are recommended for patients taking certain anti-viral, azole antifungals, or macrolide antibiotic medications [see Dosage and Administration (3)]. Cases of myopathy/rhabdomyolysis have been reported with atorvastatin coadministered with lipid modifying doses (>1 gram/day) of niacin, fibrates, colchicine, and ledipasvir plus sofosbuvir. Consider if the benefit of use of these products outweighs the increased risk of myopathy and rhabdomyolysis [see Drug Interactions (8.1)]. Concomitant intake of large quantities, more than 1.2 liters daily, of grapefruit juice is not recommended in patients taking LIPITOR [see Drug Interactions (7.1)]. Discontinue LIPITOR if markedly elevated CK levels occur or myopathy is diagnosed or suspected. Muscle symptoms and CK increases may resolve if LIPITOR is discontinued. Temporarily discontinue LIPITOR in patients experiencing an acute or serious condition at high risk of developing renal failure secondary to rhabdomyolysis (e.g., sepsis; shock; severe hypovolemia; major surgery; trauma; severe metabolic, endocrine, or electrolyte disorders; or uncontrolled epilepsy). Inform patients of the risk of myopathy and rhabdomyolysis when starting or increasing the LIPITOR dosage. Instruct patients to promptly report any unexplained muscle pain, tenderness or weakness, particularly if accompanied by malaise or fever. # 6.2 Immune-Mediated Necrotizing Myopathy There have been rare reports of immune-mediated necrotizing myopathy (IMNM), an autoimmune myopathy, associated with statin use. IMNM is characterized by: proximal muscle weakness and elevated serum creatine kinase, which persist despite discontinuation of statin treatment; positive anti-HMG CoA reductase antibody; muscle biopsy showing necrotizing myopathy; and improvement with immunosuppressive agents. Additional neuromuscular and serologic testing may be necessary. Treatment with immunosuppressive agents may be required. Consider risk of IMNM carefully prior to initiation of a different statin. If therapy is initiated with a different statin, monitor for signs and symptoms of IMNM. # **6.3 Liver Dysfunction** Statins, like some other lipid-lowering therapies, have been associated with biochemical abnormalities of liver function. Persistent elevations (>3 times the upper limit of normal [ULN] occurring on 2 or more occasions) in serum transaminases occurred in 0.7% of patients who received LIPITOR in clinical trials. The incidence of these abnormalities was 0.2%, 0.2%, 0.6%, and 2.3% for 10, 20, 40, and 80 mg, respectively. One patient in clinical trials developed jaundice. Increases in liver function tests (LFT) in other patients were not associated with jaundice or other clinical signs or symptoms. Upon dose reduction, drug interruption, or discontinuation, transaminase levels returned to or near pretreatment levels without sequelae. Eighteen of 30 patients with persistent LFT elevations continued treatment with a reduced dose of LIPITOR. It is recommended that liver enzyme tests be obtained prior to initiating therapy with LIPITOR and repeated as clinically indicated. There have been rare postmarketing reports of fatal and non-fatal hepatic failure in patients taking statins, including atorvastatin. If serious liver injury with clinical symptoms and/or hyperbilirubinemia or jaundice occurs during treatment with LIPITOR, promptly interrupt therapy. If an alternate etiology is not found, do not restart LIPITOR. LIPITOR should be used with caution in patients who consume substantial quantities of alcohol and/or have a history of liver disease. Active liver disease or unexplained persistent transaminase elevations are contraindications to the use of LIPITOR [see Contraindications (5)]. #### **6.4 Endocrine Function** Increases in HbA1c and fasting serum glucose levels have been reported with HMG-CoA reductase inhibitors, including LIPITOR. Statins interfere with cholesterol synthesis and theoretically might blunt adrenal and/or gonadal steroid production. Clinical studies have shown that LIPITOR does not reduce basal plasma cortisol concentration or impair adrenal reserve. The effects of statins on male fertility have not been studied in adequate numbers of patients. The effects, if any, on the pituitary-gonadal axis in premenopausal women are unknown. Caution should be exercised if a statin is administered concomitantly with drugs that may decrease the levels or activity of endogenous steroid hormones, such as ketoconazole, spironolactone, and cimetidine. ## 6.5 CNS Toxicity Brain hemorrhage was seen in a female dog treated for 3 months at 120 mg/kg/day. Brain hemorrhage and optic nerve vacuolation were seen in another female dog that was sacrificed in moribund condition after 11 weeks of escalating doses up to 280 mg/kg/day. The 120 mg/kg dose resulted in a systemic exposure approximately 16 times the human plasma area-under-the-curve (AUC, 0-24 hours) based on the maximum human dose of 80 mg/day. A single tonic convulsion was seen in each of 2 male dogs (one treated at 10 mg/kg/day and one at 120 mg/kg/day) in a 2-year study. No CNS lesions have been observed in mice after chronic treatment for up to 2 years at doses up to 400 mg/kg/day or in rats at doses up to 100 mg/kg/day. These doses were 6 to 11 times (mouse) and 8 to 16 times (rat) the human AUC (0-24) based on the maximum recommended human dose of 80 mg/day. CNS vascular lesions, characterized by perivascular hemorrhages, edema, and mononuclear cell infiltration of perivascular spaces, have been observed in dogs treated with other members of this class. A chemically similar drug in this class produced optic nerve degeneration (Wallerian degeneration of retinogeniculate fibers) in clinically normal dogs in a dose-dependent fashion at a dose that produced plasma drug levels about 30 times higher than the mean drug level in humans taking the highest recommended dose. ## 6.6 Use in Patients with Recent Stroke or TIA In a post-hoc analysis of the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) study where LIPITOR 80 mg vs. placebo was administered in 4,731 subjects without CHD who had a stroke or TIA within the preceding 6 months, a higher incidence of hemorrhagic stroke was seen in the LIPITOR 80 mg group compared to placebo (55, 2.3% atorvastatin vs. 33, 1.4% placebo; HR: 1.68, 95% CI: 1.09, 2.59; p=0.0168). The incidence of fatal hemorrhagic stroke was similar across treatment groups (17 vs. 18 for the atorvastatin and placebo groups, respectively). The incidence of nonfatal hemorrhagic stroke was significantly higher in the atorvastatin group (38, 1.6%) as compared to the placebo group (16, 0.7%). Some baseline characteristics, including hemorrhagic and lacunar stroke on study entry, were associated with a higher incidence of hemorrhagic stroke in the atorvastatin group [see Adverse Reactions (7.1)]. #### 7 ADVERSE REACTIONS The following serious adverse reactions are discussed in greater detail in other sections of the label: Myopathy and Rhabdomyolysis [see Warnings and Precautions (6.1)] Liver enzyme abnormalities [see Warnings and Precautions (6.3)] ## 7.1 Clinical Trials Experience Because clinical trials are conducted under widely varying conditions, the adverse reaction rates observed in the trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in clinical practice. In the LIPITOR placebo-controlled clinical trial database of 16,066 patients (8755 LIPITOR vs. 7311 placebo; age range 10–93 years, 39% women, 91% Caucasians, 3% Blacks, 2% Asians, 4% other) with a median treatment duration of 53 weeks, 9.7% of patients on LIPITOR and 9.5% of the patients on placebo discontinued due to adverse reactions regardless of causality. The five most common adverse reactions in patients treated with LIPITOR that led to treatment discontinuation and occurred at a rate greater than placebo were: myalgia (0.7%), diarrhea (0.5%), nausea (0.4%), alanine aminotransferase increase (0.4%), and hepatic enzyme increase (0.4%). The most commonly reported adverse reactions (incidence $\geq 2\%$ and greater than placebo) regardless of causality, in patients treated with LIPITOR in placebo
controlled trials (n=8755) were: nasopharyngitis (8.3%), arthralgia (6.9%), diarrhea (6.8%), pain in extremity (6.0%), and urinary tract infection (5.7%). Table 2 summarizes the frequency of clinical adverse reactions, regardless of causality, reported in \geq 2% and at a rate greater than placebo in patients treated with LIPITOR (n=8755), from seventeen placebo-controlled trials. Table 2. Clinical adverse reactions occurring in $\geq 2\%$ in patients treated with any dose of LIPITOR and at an incidence greater than placebo regardless of causality (% of patients). | Adverse Reaction* | Any dose
N=8755 | 10 mg
N=3908 | 20 mg
N=188 | 40 mg
N=604 | 80 mg
N=4055 | Placebo
N=7311 | |-------------------------|--------------------|-----------------|----------------|----------------|-----------------|-------------------| | Nasopharyngitis | 8.3 | 12.9 | 5.3 | 7.0 | 4.2 | 8.2 | | Arthralgia | 6.9 | 8.9 | 11.7 | 10.6 | 4.3 | 6.5 | | Diarrhea | 6.8 | 7.3 | 6.4 | 14.1 | 5.2 | 6.3 | | Pain in extremity | 6.0 | 8.5 | 3.7 | 9.3 | 3.1 | 5.9 | | Urinary tract infection | 5.7 | 6.9 | 6.4 | 8.0 | 4.1 | 5.6 | | Dyspepsia | 4.7 | 5.9 | 3.2 | 6.0 | 3.3 | 4.3 | | Nausea | 4.0 | 3.7 | 3.7 | 7.1 | 3.8 | 3.5 | | Musculoskeletal pain | 3.8 | 5.2 | 3.2 | 5.1 | 2.3 | 3.6 | | Muscle Spasms | 3.6 | 4.6 | 4.8 | 5.1 | 2.4 | 3.0 | | Myalgia | 3.5 | 3.6 | 5.9 | 8.4 | 2.7 | 3.1 | | Insomnia | 3.0 | 2.8 | 1.1 | 5.3 | 2.8 | 2.9 | | Pharyngolaryngeal pain | 2.3 | 3.9 | 1.6 | 2.8 | 0.7 | 2.1 | ^{*} Adverse Reaction \geq 2% in any dose greater than placebo Other adverse reactions reported in placebo-controlled studies include: Body as a whole: malaise, pyrexia; Digestive system: abdominal discomfort, eructation, flatulence, hepatitis, cholestasis; Musculoskeletal system: musculoskeletal pain, muscle fatigue, neck pain, joint swelling, lupus like syndrom; Metabolic and nutritional system: transaminases increase, liver function test abnormal, blood alkaline phosphatase increase, creatine phosphokinase increase, hyperglycemia; *Nervous system*: nightmare; *Respiratory system*: epistaxis; *Skin and appendages*: urticaria; *Special senses*: vision blurred, tinnitus; *Urogenital system*: white blood cells urine positive. ## Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT) In ASCOT [see Clinical Studies (14.1)] involving 10,305 participants (age range 40–80 years, 19% women; 94.6% Caucasians, 2.6% Africans, 1.5% South Asians, 1.3% mixed/other) treated with LIPITOR 10 mg daily (n=5,168) or placebo (n=5,137), the safety and tolerability profile of the group treated with LIPITOR was comparable to that of the group treated with placebo during a median of 3.3 years of follow-up. ## Collaborative Atorvastatin Diabetes Study (CARDS) In CARDS [see Clinical Studies (14.1)] involving 2,838 subjects (age range 39–77 years, 32% women; 94.3% Caucasians, 2.4% South Asians, 2.3% Afro-Caribbean, 1.0% other) with type 2 diabetes treated with LIPITOR 10 mg daily (n=1,428) or placebo (n=1,410), there was no difference in the overall frequency of adverse reactions or serious adverse reactions between the treatment groups during a median follow-up of 3.9 years. No cases of rhabdomyolysis were reported. # Treating to New Targets Study (TNT) In TNT [see Clinical Studies (14.1)] involving 10,001 subjects (age range 29–78 years, 19% women; 94.1% Caucasians, 2.9% Blacks, 1.0% Asians, 2.0% other) with clinically evident CHD treated with LIPITOR 10 mg daily (n=5006) or LIPITOR 80 mg daily (n=4995), there were more serious adverse reactions and discontinuations due to adverse reactions in the high-dose atorvastatin group (92, 1.8%; 497, 9.9%, respectively) as compared to the low-dose group (69, 1.4%; 404, 8.1%, respectively) during a median follow-up of 4.9 years. Persistent transaminase elevations (\geq 3 x ULN twice within 4–10 days) occurred in 62 (1.3%) individuals with atorvastatin 80 mg and in nine (0.2%) individuals with atorvastatin 10 mg. Elevations of CK (\geq 10 x ULN) were low overall, but were higher in the high-dose atorvastatin treatment group (13, 0.3%) compared to the low-dose atorvastatin group (6, 0.1%). ## Incremental Decrease in Endpoints through Aggressive Lipid Lowering Study (IDEAL) In IDEAL [see Clinical Studies (14.1)] involving 8,888 subjects (age range 26–80 years, 19% women; 99.3% Caucasians, 0.4% Asians, 0.3% Blacks, 0.04% other) treated with LIPITOR 80 mg/day (n=4439) or simvastatin 20–40 mg daily (n=4449), there was no difference in the overall frequency of adverse reactions or serious adverse reactions between the treatment groups during a median follow-up of 4.8 years. # Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) In SPARCL involving 4731 subjects (age range 21-92 years, 40% women; 93.3% Caucasians, 3.0% Blacks, 0.6% Asians, 3.1% other) without clinically evident CHD but with a stroke or transient ischemic attack (TIA) within the previous 6 months treated with LIPITOR 80 mg (n=2365) or placebo (n=2366) for a median follow-up of 4.9 years, there was a higher incidence of persistent hepatic transaminase elevations (≥ 3 x ULN twice within 4-10 days) in the atorvastatin group (0.9%) compared to placebo (0.1%). Elevations of CK (>10 x ULN) were rare, but were higher in the atorvastatin group (0.1%) compared to placebo (0.0%). Diabetes was reported as an adverse reaction in 144 subjects (6.1%) in the atorvastatin group and 89 subjects (3.8%) in the placebo group [see Warnings and Precautions (6)]. In a post-hoc analysis, LIPITOR 80 mg reduced the incidence of ischemic stroke (218/2365, 9.2% vs. 274/2366, 11.6%) and increased the incidence of hemorrhagic stroke (55/2365, 2.3% vs. 33/2366, 1.4%) compared to placebo. The incidence of fatal hemorrhagic stroke was similar between groups (17 LIPITOR vs. 18 placebo). The incidence of non-fatal hemorrhagic strokes was significantly greater in the atorvastatin group (38 non-fatal hemorrhagic strokes) as compared to the placebo group (16 non-fatal hemorrhagic strokes). Subjects who entered the study with a hemorrhagic stroke appeared to be at increased risk for hemorrhagic stroke [7 (16%) LIPITOR vs. 2 (4%) placebo]. There were no significant differences between the treatment groups for all-cause mortality: 216 (9.1%) in the LIPITOR 80 mg/day group vs. 211 (8.9%) in the placebo group. The proportions of subjects who experienced cardiovascular death were numerically smaller in the LIPITOR 80 mg group (3.3%) than in the placebo group (4.1%). The proportions of subjects who experienced non-cardiovascular death were numerically larger in the LIPITOR 80 mg group (5.0%) than in the placebo group (4.0%). # Adverse Reactions from Clinical Studies of LIPITOR in Pediatric Patients In a 26-week controlled study in boys and postmenarchal girls with HeFH (ages 10 years to 17 years) (n=140, 31% female; 92% Caucasians, 1.6% Blacks, 1.6% Asians, 4.8% other), the safety and tolerability profile of LIPITOR 10 to 20 mg daily, as an adjunct to diet to reduce total cholesterol, LDL-C, and apo B levels, was generally similar to that of placebo [see Use in Special Populations (9.4) and Clinical Studies (14.6)]. ## 7.2 Postmarketing Experience The following adverse reactions have been identified during post-approval use of LIPITOR. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure. Adverse reactions associated with LIPITOR therapy reported since market introduction, that are not listed above, regardless of causality assessment, include the following: anaphylaxis, angioneurotic edema, bullous rashes (including erythema multiforme, Stevens-Johnson syndrome, and toxic epidermal necrolysis), rhabdomyolysis, myositis, fatigue, tendon rupture, fatal and non-fatal hepatic failure, dizziness, depression, peripheral neuropathy, pancreatitis and interstitial lung disease. There have been rare reports of immune-mediated necrotizing myopathy associated with statin use [see Warnings and Precautions (6.1)]. There have been rare postmarketing reports of cognitive impairment (e.g., memory loss, forgetfulness, amnesia, memory impairment, confusion) associated with statin use. These cognitive issues have been reported for all statins. The reports are generally nonserious, and reversible upon statin discontinuation, with variable times to symptom onset (1 day to years) and symptom resolution (median of 3 weeks). ## Reporting of suspected adverse reactions Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Any suspected adverse events should be reported to the Ministry of Health according to the National Regulation by using an online form https://sideeffects.health.gov.il/ #### 8 DRUG INTERACTIONS # 8.1 Drug Interactions that may Increase the Risk of Myopathy and Rhabdomyolysis with LIPITOR LIPITOR is a substrate of CYP3A4 and transporters (e.g., OATP1B1/1B3, P-gp, or BCRP). LIPITOR plasma levels can be significantly increased with concomitant administration of inhibitors of CYP3A4 and transporters. Table 3 includes a list of drugs that may increase exposure to Lipitor and may increase the risk of myopathy and rhabdomyolysis when used concomitantly and instructions for preventing or managing them [see Warnings and Precautions (5.1) and Clinical Pharmacology (12.3)]. Table 3: Drug Interactions that may Increase the Risk of Myopathy and Rhabdomyolysis with LIPITOR | Cyclosporine or Gemfib | rozil | |-------------------------------
---| | Clinical Impact: | Atorvastatin plasma levels were significantly increased with concomitant administration of LIPITOR and cyclosporine, an inhibitor of CYP3A4 and OATP1B1 [see Clinical Pharmacology (12.3)]. Gemfibrozil may cause myopathy when given alone. The risk of myopathy and rhabdomyolysis is increased with concomitant use of cyclosporine or gemfibrozil with LIPITOR. | | Intervention: | Concomitant use of cyclosporine or gemfibrozil with LIPITOR is not recommended. | | Anti-Viral Medications | | | Clinical Impact: | Atorvastatin plasma levels were significantly increased with concomitant administration of LIPITOR with many anti-viral medications, which are inhibitors of CYP3A4 and/or transporters (e.g., BCRP, OATP1B1/1B3, P-gp, MRP2, and/or OAT2) [see Clinical Pharmacology (12.3)]. Cases of myopathy and rhabdomyolysis have been reported with concomitant use of ledipasvir plus sofosbuvir with LIPITOR. | | Intervention: | Concomitant use of tipranavir plus ritonavir or glecaprevir plus pibrentasvir with LIPITOR is not recommended. In patients taking lopinavir plus ritonavir, or simeprevir, consider the risk/benefit of concomitant use with atorvastatin. In patients taking saquinavir plus ritonavir, darunavir plus ritonavir, fosamprenavir, fosamprenavir plus ritonavir, elbasvir plus grazoprevir or letermovir, do not exceed LIPITOR 20 mg. | | | • In patients taking nelfinavir, do not exceed LIPITOR 40 mg [see Dosage and Administration (3)]. | |-------------------------|---| | | • Consider the risk/benefit of concomitant use of ledipasvir plus sofosbuvir with LIPITOR. | | | Monitor all patients for signs and symptoms of myopathy particularly during initiation of | | | therapy and during upward dose titration of either drug. | | Examples: | Tipranavir plus ritonavir, glecaprevir plus pibrentasvir, lopinavir plus ritonavir, simeprevir, | | | saquinavir plus ritonavir, darunavir plus ritonavir, fosamprenavir, fosamprenavir plus ritonavir, | | | elbasvir plus grazoprevir, letermovir, nelfinavir, and ledipasvir plus sofosbuvir. | | Select Azole Antifunga | ls or Macrolide Antibiotics | | | Atorvastatin plasma levels were significantly increased with concomitant administration of | | Clinical Impact: | LIPITOR with select azole antifungals or macrolide antibiotics, due to inhibition of CYP3A4 | | 1 | and/or transporters [see Clinical Pharmacology (12.3)]. | | | In patients taking clarithromycin or itraconazole, do not exceed LIPITOR 20 mg [see Dosage and | | | Administration (3)]. Consider the risk/benefit of concomitant use of other azole antifungals or | | Intervention: | macrolide antibiotics with LIPITOR. Monitor all patients for signs and symptoms of myopathy | | | particularly during initiation of therapy and during upward dose titration of either drug. | | Examples: | Erythromycin, clarithromycin, itraconazole, ketoconazole, posaconazole, and voriconazole. | | Niacin | Elyunomyom, charamomyom, maconazote, ketoconazote, posaconazote, and volteonazote. | | | Cases of myopathy and rhabdomyolysis have been observed with concomitant use of lipid | | Clinical Impact: | modifying dosages of niacin (≥1 gram/day niacin) with LIPITOR. | | | Consider if the benefit of using lipid modifying dosages of niacin concomitantly with LIPITOR | | , , , , , . | outweighs the increased risk of myopathy and rhabdomyolysis. If concomitant use is decided, | | Intervention: | monitor patients for signs and symptoms of myopathy particularly during initiation of therapy and | | | during upward dose titration of either drug. | | Fibrates (other than Ge | | | | Fibrates may cause myopathy when given alone. The risk of myopathy and rhabdomyolysis is | | Clinical Impact: | increased with concomitant use of fibrates with LIPITOR. | | | Consider if the benefit of using fibrates concomitantly with LIPITOR outweighs the increased risk | | Intervention: | of myopathy and rhabdomyolysis. If concomitant use is decided, monitor patients for signs and | | intervention. | symptoms of myopathy particularly during initiation of therapy and during upward dose titration | | | of either drug. | | Colchicine | | | Clinical Impact: | Cases of myopathy and rhabdomyolysis have been reported with concomitant use of colchicine | | Ciinicai Impaci: | with LIPITOR. | | | Consider the risk/benefit of concomitant use of colchicine with LIPITOR. If concomitant use is | | Intervention: | decided, monitor patients for signs and symptoms of myopathy particularly during initiation of | | | therapy and during upward dose titration of either drug. | | Grapefruit Juice | | | • | Grapefruit juice consumption, especially excessive consumption, more than 1.2 liters/daily, can | | Clinical Impact: | raise the plasma levels of atorvastatin and may increase the risk of myopathy and rhabdomyolysis. | | | Avoid intake of large quantities of grapefruit juice, more than 1.2 liters daily, when taking | | Intervention: | LIPITOR. | | | | # 7.2 Drug Interactions that may Decrease Exposure to LIPITOR Table 4 presents drug interactions that may decrease exposure to LIPITOR and instructions for preventing or managing them. Table 4: Drug Interactions that may Decrease Exposure to LIPITOR | Rifampin | | |------------------|--| | | Concomitant administration of LIPITOR with rifampin, an inducer of cytochrome P450 3A4 and | | | inhibitor of OATP1B1, can lead to variable reductions in plasma concentrations of atorvastatin. | | Clinical Impact: | 1 / 2 | | | administration of rifampin has been associated with a significant reduction in atorvastatin plasma | | | concentrations. | | Intervention: | Administer LIPITOR and rifampin simultaneously. | ## 7.3 LIPITOR Effects on Other Drugs Table 5 presents LIPITOR's effect on other drugs and instructions for preventing or managing them. **Table 5: LIPITOR Effects on Other Drugs** | Oral Contraceptives | | |---------------------|---| | Clinical Impact: | Co-administration of LIPITOR and an oral contraceptive increased plasma concentrations of norethindrone and ethinyl estradiol [see Clinical Pharmacology (12.3)]. | | Intervention: | Consider this when selecting an oral contraceptive for patients taking LIPITOR. | | Digoxin | | | Clinical Impact: | When multiple doses of LIPITOR and digoxin were co-administered, steady state plasma digoxin concentrations increased [see Clinical Pharmacology (12.3)]. | | Intervention: | Monitor patients taking digoxin appropriately. | #### 9 USE IN SPECIFIC POPULATIONS ## 9.1 Pregnancy ## Risk Summary LIPITOR is contraindicated for use in pregnant women since safety in pregnant women has not been established and there is no apparent benefit of lipid lowering drugs during pregnancy. Because HMG-CoA reductase inhibitors decrease cholesterol synthesis and possibly the synthesis of other biologically active substances derived from cholesterol, LIPITOR may cause fetal harm when administered to a pregnant woman. LIPITOR should be discontinued as soon as pregnancy is recognized [see Contraindications (5)]. Limited published data on the use of atorvastatin are insufficient to determine a drug-associated risk of major congenital malformations or miscarriage. In animal reproduction studies in rats and rabbits there was no evidence of embryo-fetal toxicity or congenital malformations at doses up to 30 and 20 times, respectively, the human exposure at the maximum recommended human dose (MRHD) of 80 mg, based on body surface area (mg/m²). In rats administered atorvastatin during gestation and lactation, decreased postnatal growth and development was observed at doses ≥ 6 times the MRHD (see Data). The estimated background risk of major birth defects and miscarriage for the indicated population is unknown. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2-4% and 15-20%, respectively. ## Data #### Human Data Limited published data on atorvastatin calcium from observational studies, meta-analyses and case reports have not shown an increased risk of major congenital malformations or miscarriage. Rare reports of congenital anomalies have been received following intrauterine exposure to other HMG-CoA reductase inhibitors. In a review of approximately 100 prospectively followed pregnancies in women exposed to simvastatin or lovastatin, the incidences of congenital anomalies, spontaneous abortions, and fetal deaths/stillbirths did not exceed what would be expected in the general population. The number of cases is adequate to exclude a ≥ 3 to 4-fold increase in congenital anomalies over the background incidence. In 89% of the prospectively followed pregnancies, drug treatment was initiated prior to pregnancy and was discontinued at some point in the first trimester when pregnancy was identified. # Animal Data Atorvastatin crosses the rat placenta and reaches a level in fetal liver equivalent to that of maternal plasma. Atorvastatin was administered to pregnant rats and rabbits during organogenesis at oral doses up to 300 mg/kg/day and 100 mg/kg/day, respectively. Atorvastatin was not
teratogenic in rats at doses up to 300 mg/kg/day or in rabbits at doses up to 100 mg/kg/day. These doses resulted in multiples of about 30 times (rat) or 20 times (rabbit) the human exposure at the MRHD based on surface area (mg/m²). In rats, the maternally toxic dose of 300 mg/kg resulted in increased postimplantation loss and decreased fetal body weight. At the maternally toxic doses of 50 and 100 mg/kg/day in rabbits, there was increased post-implantation loss, and at 100 mg/kg/day fetal body weights were decreased. In a study in pregnant rats administered 20, 100, or 225 mg/kg/day from gestation day 7 through to lactation day 20 (weaning), there was decreased survival at birth, postnatal day 4, weaning, and post-weaning in pups of mothers dosed with 225 mg/kg/day, a dose at which maternal toxicity was observed. Pup body weight was decreased through postnatal day 21 at 100 mg/kg/day, and through postnatal day 91 at 225 mg/kg/day. Pup development was delayed (rotarod performance at 100 mg/kg/day and acoustic startle at 225 mg/kg/day; pinnae detachment and eye-opening at 225 mg/kg/day). These doses correspond to 6 times (100 mg/kg) and 22 times (225 mg/kg) the human exposure at the MRHD, based on AUC. #### 9.2 Lactation ## Risk Summary LIPITOR use is contraindicated during breastfeeding [see Contraindications (5)]. There is no available information on the effects of the drug on the breastfed infant or the effects of the drug on milk production. It is not known whether atorvastatin is present in human milk, but it has been shown that another drug in this class passes into human milk and atorvastatin is present in rat milk. Because of the potential for serious adverse reactions in a breastfed infant, advise women that breastfeeding is not recommended during treatment with LIPITOR. ## 9.3 Females and Males of Reproductive Potential #### Contraception LIPITOR may cause fetal harm when administered to a pregnant woman. Advise females of reproductive potential to use effective contraception during treatment with LIPITOR [see Use in Specific Populations (9.1)]. ## 9.4 Pediatric Use Heterozygous Familial Hypercholesterolemia (HeFH) The safety and effectiveness of LIPITOR have been established in pediatric patients, 10 years to 17 years of age, with HeFH as an adjunct to diet to reduce total cholesterol, LDL-C, and apo B levels when, after an adequate trial of diet therapy, the following are present: - LDL-C \geq 190 mg/dL, or - LDL-C \geq 160 mg/dL and - o a positive family history of FH, or premature CVD in a first, or second-degree relative, or - o two or more other CVD risk factors are present. Use of LIPITOR for this indication is supported by evidence from [see Dosage and Administration (3), Adverse Reactions (7.1), Clinical Pharmacology (12.3), and Clinical Studies (14.6)]: - A placebo-controlled clinical trial of 6 months duration in 187 boys and postmenarchal girls, 10 years to 17 years of age. Patients treated with 10 mg or 20 mg daily LIPITOR had an adverse reaction profile generally similar to that of patients treated with placebo. In this limited controlled study, there was no significant effect on growth or sexual maturation in boys or on menstrual cycle length in girls. - A three year open-label uncontrolled trial that included 163 pediatric patients 10 to 15 years of age with HeFH who were titrated to achieve a target LDL-C < 130 mg/dL. The safety and efficacy of LIPITOR in lowering LDL-C appeared generally consistent with that observed for adult patients, despite limitations of the uncontrolled study design Advise postmenarchal girls of contraception recommendations, if appropriate for the patient [see Use in Specific Populations (9.1), (9.3)]. The long-term efficacy of LIPITOR therapy initiated in childhood to reduce morbidity and mortality in adulthood has not been established. The safety and efficacy of LIPITOR have not been established in pediatric patients younger than 10 years of age with HeFH. Homozygous Familial Hypercholesterolemia (HoFH) Clinical efficacy of LIPITOR with dosages up to 80 mg/day for 1 year was evaluated in an uncontrolled study of patients with HoFH including 8 pediatric patients [see Clinical Studies (14.5)]. ## 9.5 Geriatric Use Of the 39,828 patients who received LIPITOR in clinical studies, 15,813 (40%) were ≥65 years old and 2,800 (7%) were ≥75 years old. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older adults cannot be ruled out. Since advanced age (≥65 years) is a predisposing factor for myopathy, LIPITOR should be prescribed with caution in the elderly. ## 9.6 Hepatic Impairment Lipitor is contraindicated in patients with active liver disease which may include unexplained persistent elevations in hepatic transaminase levels [see Contraindications (5) and Clinical Pharmacology (12.3)]. #### 10 OVERDOSAGE There is no specific treatment for LIPITOR overdosage. In the event of an overdose, the patient should be treated symptomatically, and supportive measures instituted as required. Due to extensive drug binding to plasma proteins, hemodialysis is not expected to significantly enhance LIPITOR clearance. ## 11 DESCRIPTION LIPITOR is a synthetic lipid-lowering agent. Atorvastatin is an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. This enzyme catalyzes the conversion of HMG-CoA to mevalonate, an early and rate-limiting step in cholesterol biosynthesis. Atorvastatin calcium is [R-(R*, R*)]-2-(4-fluorophenyl)- β , δ -dihydroxy-5-(1-methylethyl)-3-phenyl-4-[(phenylamino)carbonyl]-1H-pyrrole-1-heptanoic acid, calcium salt (2:1) trihydrate. The empirical formula of atorvastatin calcium is $(C_{33}H_{34}FN_2O_5)_2Ca \cdot 3H_2O$ and its molecular weight is 1209.42. Its structural formula is: Atorvastatin calcium is a white to off-white crystalline powder that is insoluble in aqueous solutions of pH 4 and below. Atorvastatin calcium is very slightly soluble in distilled water, pH 7.4 phosphate buffer, and acetonitrile; slightly soluble in ethanol; and freely soluble in methanol. LIPITOR Tablets for oral administration contain 10, 20, 40, or 80 mg of atorvastatin and the following inactive ingredients: calcium carbonate, lactose monohydrate, microcrystalline cellulose, croscarmellose sodium, hydroxypropyl cellulose, magnesium stearate, polysorbate 80Opadry White YS-1-7040 (hydroxypropyl methylcellulose, polyethylene glycol, titanium dioxide, talc);simethicone emulsion. # 12 CLINICAL PHARMACOLOGY ## 12.1 Mechanism of Action LIPITOR is a selective, competitive inhibitor of HMG-CoA reductase, the rate-limiting enzyme that converts 3-hydroxy-3-methylglutaryl-coenzyme A to mevalonate, a precursor of sterols, including cholesterol. In animal models, LIPITOR lowers plasma cholesterol and lipoprotein levels by inhibiting HMG-CoA reductase and cholesterol synthesis in the liver and by Pfleet 2022-007615 increasing the number of hepatic LDL receptors on the cell surface to enhance uptake and catabolism of LDL; LIPITOR also reduces LDL production and the number of LDL particles. ## 12.2 Pharmacodynamics LIPITOR, as well as some of its metabolites, are pharmacologically active in humans. The liver is the primary site of action and the principal site of cholesterol synthesis and LDL clearance. Drug dosage, rather than systemic drug concentration, correlates better with LDL-C reduction. Individualization of drug dosage should be based on therapeutic response [see Dosage and Administration (3)]. ## 12.3 Pharmacokinetics Absorption: LIPITOR is rapidly absorbed after oral administration; maximum plasma concentrations occur within 1 to 2 hours. Extent of absorption increases in proportion to LIPITOR dose. The absolute bioavailability of atorvastatin (parent drug) is approximately 14% and the systemic availability of HMG-CoA reductase inhibitory activity is approximately 30%. The low systemic availability is attributed to presystemic clearance in gastrointestinal mucosa and/or hepatic first-pass metabolism. Although food decreases the rate and extent of drug absorption by approximately 25% and 9%, respectively, as assessed by Cmax and AUC, LDL-C reduction is similar whether LIPITOR is given with or without food. Plasma LIPITOR concentrations are lower (approximately 30% for Cmax and AUC) following evening drug administration compared with morning. However, LDL-C reduction is the same regardless of the time of day of drug administration [see Dosage and Administration (3)]. **Distribution:** Mean volume of distribution of LIPITOR is approximately 381 liters. LIPITOR is ≥98% bound to plasma proteins. A blood/plasma ratio of approximately 0.25 indicates poor drug penetration into red blood cells. Based on observations in rats, LIPITOR is likely to be secreted in human milk [see Contraindications (5) and Use in Specific Populations (9.2)]. **Metabolism:** LIPITOR is extensively metabolized to ortho- and parahydroxylated derivatives and various beta-oxidation products. *In vitro* inhibition of HMG-CoA reductase by ortho- and parahydroxylated metabolites is equivalent to that of LIPITOR. Approximately 70% of circulating inhibitory activity for HMG-CoA reductase is attributed to active metabolites. *In vitro* studies suggest the importance of LIPITOR metabolism by cytochrome P450 3A4, consistent with increased plasma concentrations of LIPITOR in humans following co-administration with erythromycin, a known inhibitor of this isozyme [see Drug Interactions (8.1)]. In animals, the ortho-hydroxy metabolite undergoes further glucuronidation. **Excretion:** LIPITOR and its metabolites are eliminated primarily in bile following hepatic and/or extra-hepatic metabolism; however, the drug does not appear to undergo enterohepatic recirculation. Mean
plasma elimination half-life of LIPITOR in humans is approximately 14 hours, but the half-life of inhibitory activity for HMG-CoA reductase is 20 to 30 hours due to the contribution of active metabolites. Less than 2% of a dose of LIPITOR is recovered in urine following oral administration. ## **Specific Populations** **Geriatric:** Plasma concentrations of LIPITOR are higher (approximately 40% for Cmax and 30% for AUC) in healthy elderly subjects (age ≥65 years) than in young adults. Clinical data suggest a greater degree of LDL-lowering at any dose of drug in the elderly patient population compared to younger adults [see Use in Specific Populations (9.5)]. **Pediatric:** Apparent oral clearance of atorvastatin in pediatric subjects appeared similar to that of adults when scaled allometrically by body weight as the body weight was the only significant covariate in atorvastatin population PK model with data including pediatric HeFH patients (ages 10 years to 17 years of age, n=29) in an open-label, 8-week study. **Gender:** Plasma concentrations of LIPITOR in women differ from those in men (approximately 20% higher for Cmax and 10% lower for AUC); however, there is no clinically significant difference in LDL-C reduction with LIPITOR between men and women. **Renal Impairment:** Renal disease has no influence on the plasma concentrations or LDL-C reduction of LIPITOR; thus, dose adjustment in patients with renal dysfunction is not necessary [see Dosage and Administration (3) and Warnings and Precautions (6.1)]. **Hemodialysis:** While studies have not been conducted in patients with end-stage renal disease, hemodialysis is not expected to significantly enhance clearance of LIPITOR since the drug is extensively bound to plasma proteins. **Hepatic Impairment:** In patients with chronic alcoholic liver disease, plasma concentrations of LIPITOR are markedly increased. Cmax and AUC are each 4-fold greater in patients with Childs-Pugh A disease. Cmax and AUC are approximately 16-fold and 11-fold increased, respectively, in patients with Childs-Pugh B disease [see Contraindications (5)]. # **Drug Interaction Studies** Atorvastatin is a substrate of the hepatic transporters, OATP1B1 and OATP1B3 transporter. Metabolites of atorvastatin are substrates of OATP1B1. Atorvastatin is also identified as a substrate of the efflux transporter BCRP, which may limit the intestinal absorption and biliary clearance of atorvastatin. TABLE 6. Effect of Co-administered Drugs on the Pharmacokinetics of Atorvastatin | Co-administered drug and | Atorvastatin | | | |---|-----------------------------------|---------------|--------------------------------| | dosing regimen | Dose (mg) | Ratio of AUC& | Ratio of Cmax ^{&} | | *Cyclosporine 5.2 mg/kg/day, stable dose | 10 mg QD ^a for 28 days | 8.69 | 10.66 | | *Tipranavir 500 mg BIDb/ritonavir 200 mg BIDb, 7 days | 10 mg, SD ^c | 9.36 | 8.58 | | #Glecaprevir 400 mg QDa/pibrentasvir
120 mg QDa, 7 days | 10 mg QDa for 7 days | 8.28 | 22.00 | | *Telaprevir 750 mg q8hf, 10 days | 20 mg, SD ^c | 7.88 | 10.60 | | #, ‡Saquinavir 400 mg BIDb/ ritonavir
400 mg BIDb, 15 days | 40 mg QD ^a for 4 days | 3.93 | 4.31 | | *Elbasvir 50 mg QD ^a /grazoprevir 200 mg QD ^a , 13 days | 10 mg SD ^c | 1.94 | 4.34 | | *Simeprevir 150 mg QDa, 10 days | 40 mg SD ^c | 2.12 | 1.70 | | #Clarithromycin 500 mg BIDb, 9 days | 80 mg QDa for 8 days | 4.54 | 5.38 | | *Darunavir 300 mg BIDb/ritonavir
100 mg BIDb, 9 days | 10 mg QD ^a for 4 days | 3.45 | 2.25 | | #Itraconazole 200 mg QDa, 4 days | 40 mg SD ^c | 3.32 | 1.20 | | #Letermovir 480 mg QDa, 10 days | 20 mg SD ^c | 3.29 | 2.17 | | #Fosamprenavir 700 mg BIDb/ritonavir 100 mg BIDb, 14 days | 10 mg QD ^a for 4 days | 2.53 | 2.84 | | #Fosamprenavir 1400 mg BIDb, 14 days | 10 mg QDa for 4 days | 2.30 | 4.04 | | *Nelfinavir 1250 mg BIDb, 14 days | 10 mg QDa for 28 days | 1.74 | 2.22 | | #Grapefruit Juice, 240 mL QDa,* | 40 mg, SD ^c | 1.37 | 1.16 | | Diltiazem 240 mg QDa, 28 days | 40 mg, SD ^c | 1.51 | 1.00 | | Erythromycin 500 mg QIDe, 7 days | 10 mg, SD ^c | 1.33 | 1.38 | | Amlodipine 10 mg, single dose | 80 mg, SD ^c | 1.18 | 0.91 | | Cimetidine 300 mg QIDe, 2 weeks | 10 mg QD ^a for 2 weeks | 1.00 | 0.89 | | Colestipol 10 g BID ^b , 24 weeks | 40 mg QD ^a for 8 weeks | NA | 0.74** | | Maalox TC® 30 mL QIDe, 17 days | 10 mg QDa for 15 days | 0.66 | 0.67 | | Co-administered drug and dosing regimen | | | | |---|-----------------------|---------------|--------------------------------| | | Dose (mg) | Ratio of AUC& | Ratio of Cmax ^{&} | | Efavirenz 600 mg QDa, 14 days | 10 mg for 3 days | 0.59 | 1.01 | | *Rifampin 600 mg QDa, 7 days (co-administered) † | 40 mg SD ^c | 1.12 | 2.90 | | *Rifampin 600 mg QDa, 5 days (doses separated) [†] | 40 mg SD ^c | 0.20 | 0.60 | | #Gemfibrozil 600 mg BIDb, 7 days | 40 mg SD ^c | 1.35 | 1.00 | | #Fenofibrate 160 mg QDa, 7 days | 40 mg SD ^c | 1.03 | 1.02 | | Boceprevir 800 mg TIDd, 7 days | 40 mg SD ^c | 2.32 | 2.66 | - Represents ratio of treatments (co-administered drug plus atorvastatin vs. atorvastatin alone). - * See Sections 5.1 and 7 for clinical significance. - * Greater increases in AUC (ratio of AUC up to 2.5) and/or Cmax (ratio of Cmax up to 1.71) have been reported with excessive grapefruit consumption (≥ 750 mL 1.2 liters per day). - ** Ratio based on a single sample taken 8-16 h post dose. - Due to the dual interaction mechanism of rifampin, simultaneous co-administration of atorvastatin with rifampin is recommended, as delayed administration of atorvastatin after administration of rifampin has been associated with a significant reduction in atorvastatin plasma concentrations. - The dose of saquinavir plus ritonavir in this study is not the clinically used dose. The increase in atorvastatin exposure when used clinically is likely to be higher than what was observed in this study. Therefore, caution should be applied and the lowest dose necessary should be used. - a Once daily - b Twice daily - c Single dose - d Three times daily - Four times daily - f Every 8 hours TABLE 7. Effect of Atorvastatin on the Pharmacokinetics of Co-administered Drugs | Atorvastatin | Co-administered drug and dosing regimen | | | | |-----------------------------------|--|--------------|---------------|--| | | Drug/Dose (mg) | Ratio of AUC | Ratio of Cmax | | | 80 mg QD ^a for 15 days | Antipyrine, 600 mg SD ^c | 1.03 | 0.89 | | | 80 mg QD ^a for 10 days | #Digoxin 0.25 mg QDa, 20 days | 1.15 | 1.20 | | | | Oral contraceptive QDa, 2 months | | | | | 40 mg QDa for 22 days | - norethindrone 1 mg | 1.28 | 1.23 | | | | - ethinyl estradiol 35µg | 1.19 | 1.30 | | | 10 mg, SD ^c | Tipranavir 500 mg BID ^b /ritonavir 200 mg BID ^b , 7 days | 1.08 | 0.96 | | | 10 mg QD ^a for 4 days | Fosamprenavir 1400 mg BID ^b ,
14 days | 0.73 | 0.82 | | | 10 mg QDa for 4 days | Fosamprenavir 700 mg BID ^b /ritonavir 100 mg BID ^b , 14 days | 0.99 | 0.94 | | - * See Section 7 for clinical significance. - a Once daily - b Twice daily - c Single dose LIPITOR had no clinically significant effect on prothrombin time when administered to patients receiving chronic warfarin treatment. ## 13 NONCLINICAL TOXICOLOGY # 13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility In a 2-year carcinogenicity study in rats at dose levels of 10, 30, and 100 mg/kg/day, 2 rare tumors were found in muscle in high-dose females: in one, there was a rhabdomyosarcoma and, in another, there was a fibrosarcoma. This dose represents a plasma AUC (0-24) value of approximately 16 times the mean human plasma drug exposure after an 80 mg oral dose. A 2-year carcinogenicity study in mice given 100, 200, or 400 mg/kg/day resulted in a significant increase in liver adenomas in high-dose males and liver carcinomas in high-dose females. These findings occurred at plasma AUC (0–24) values of approximately 6 times the mean human plasma drug exposure after an 80 mg oral dose. In vitro, atorvastatin was not mutagenic or clastogenic in the following tests with and without metabolic activation: the Ames test with Salmonella typhimurium and Escherichia coli, the HGPRT forward mutation assay in Chinese hamster lung cells, and the chromosomal aberration assay in Chinese hamster lung cells. Atorvastatin was negative in the *in vivo* mouse micronucleus test. In female rats, atorvastatin at doses up to 225 mg/kg (56 times the human exposure) did not cause adverse effects on fertility. Studies in male rats performed at doses up to 175 mg/kg (15 times the human exposure) produced no changes in fertility. There was aplasia and aspermia in the epididymis of 2 of 10 rats treated with 100 mg/kg/day of atorvastatin for 3 months (16 times the human AUC at the 80 mg dose); testis weights were significantly lower at 30 and 100 mg/kg and epididymal weight was lower at 100 mg/kg. Male rats given 100 mg/kg/day for 11 weeks prior to mating had decreased sperm motility, spermatid head concentration, and increased abnormal sperm. Atorvastatin caused no adverse effects on semen parameters, or reproductive organ histopathology in dogs given doses of 10, 40, or 120 mg/kg for two years. ## 14 CLINICAL STUDIES ### 14.1 Prevention of Cardiovascular Disease In the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT), the effect of LIPITOR on fatal and non-fatal coronary heart disease was assessed in 10,305 hypertensive patients 40–80 years of age (mean of 63 years), without a previous myocardial infarction and with TC levels ≤251 mg/dL (6.5 mmol/L). Additionally, all patients had at least 3 of the following cardiovascular risk factors: male gender (81.1%), age >55 years (84.5%), smoking (33.2%), diabetes (24.3%), history of CHD in a first-degree relative (26%), TC:HDL >6 (14.3%), peripheral vascular disease
(5.1%), left ventricular hypertrophy (14.4%), prior cerebrovascular event (9.8%), specific ECG abnormality (14.3%), proteinuria/albuminuria (62.4%). In this double-blind, placebo-controlled study, patients were treated with anti-hypertensive therapy (Goal BP <140/90 mm Hg for non-diabetic patients; <130/80 mm Hg for diabetic patients) and allocated to either LIPITOR 10 mg daily (n=5168) or placebo (n=5137), using a covariate adaptive method which took into account the distribution of nine baseline characteristics of patients already enrolled and minimized the imbalance of those characteristics across the groups. Patients were followed for a median duration of 3.3 years. The effect of 10 mg/day of LIPITOR on lipid levels was similar to that seen in previous clinical trials. LIPITOR significantly reduced the rate of coronary events [either fatal coronary heart disease (46 events in the placebo group vs. 40 events in the LIPITOR group) or non-fatal MI (108 events in the placebo group vs. 60 events in the LIPITOR group)] with a relative risk reduction of 36% [(based on incidences of 1.9% for LIPITOR vs. 3.0% for placebo), p=0.0005 (see Figure 1)]. The risk reduction was consistent regardless of age, smoking status, obesity, or presence of renal dysfunction. The effect of LIPITOR was seen regardless of baseline LDL levels. Due to the small number of events, results for women were inconclusive. Figure 1: Effect of LIPITOR 10 mg/day on Cumulative Incidence of Non-Fatal Myocardial Infarction or Coronary Heart Disease Death (in ASCOT-LLA) LIPITOR also significantly decreased the relative risk for revascularization procedures by 42% (incidences of 1.4% for LIPITOR and 2.5% for placebo). Although the reduction of fatal and non-fatal strokes did not reach a pre-defined significance level (p=0.01), a favorable trend was observed with a 26% relative risk reduction (incidences of 1.7% for LIPITOR and 2.3% for placebo). There was no significant difference between the treatment groups for death due to cardiovascular causes (p=0.51) or noncardiovascular causes (p=0.17). In the Collaborative Atorvastatin Diabetes Study (CARDS), the effect of LIPITOR on cardiovascular disease (CVD) endpoints was assessed in 2838 subjects (94% white, 68% male), ages 40-75 with type 2 diabetes based on WHO criteria, without prior history of cardiovascular disease and with LDL ≤ 160 mg/dL and TG ≤ 600 mg/dL. In addition to diabetes, subjects had 1 or more of the following risk factors: current smoking (23%), hypertension (80%), retinopathy (30%), or microalbuminuria (9%) or macroalbuminuria (3%). No subjects on hemodialysis were enrolled in the study. In this multicenter, placebo-controlled, double-blind clinical trial, subjects were randomly allocated to either LIPITOR 10 mg daily (1429) or placebo (1411) in a 1:1 ratio and were followed for a median duration of 3.9 years. The primary endpoint was the occurrence of any of the major cardiovascular events: myocardial infarction, acute CHD death, unstable angina, coronary revascularization, or stroke. The primary analysis was the time to first occurrence of the primary endpoint. Baseline characteristics of subjects were: mean age of 62 years, mean HbA $_{1c}$ 7.7%; median LDL-C 120 mg/dL; median TC 207 mg/dL; median TG 151 mg/dL; median HDL-C 52 mg/dL. The effect of LIPITOR 10 mg/day on lipid levels was similar to that seen in previous clinical trials. LIPITOR significantly reduced the rate of major cardiovascular events (primary endpoint events) (83 events in the LIPITOR group vs. 127 events in the placebo group) with a relative risk reduction of 37%, HR 0.63, 95% CI (0.48, 0.83) (p=0.001) (see Figure 2). An effect of LIPITOR was seen regardless of age, sex, or baseline lipid levels. LIPITOR significantly reduced the risk of stroke by 48% (21 events in the LIPITOR group vs. 39 events in the placebo group), HR 0.52, 95% CI (0.31, 0.89) (p=0.016) and reduced the risk of MI by 42% (38 events in the LIPITOR group vs. 64 events in the placebo group), HR 0.58, 95.1% CI (0.39, 0.86) (p=0.007). There was no significant difference between the treatment groups for angina, revascularization procedures, and acute CHD death. There were 61 deaths in the LIPITOR group vs. 82 deaths in the placebo group (HR 0.73, p=0.059). Figure 2: Effect of LIPITOR 10 mg/day on Time to Occurrence of Major Cardiovascular Event (myocardial infarction, acute CHD death, unstable angina, coronary revascularization, or stroke) in CARDS In the Treating to New Targets Study (TNT), the effect of LIPITOR 80 mg/day vs. LIPITOR 10 mg/day on the reduction in cardiovascular events was assessed in 10,001 subjects (94% white, 81% male, 38% \geq 65 years) with clinically evident coronary heart disease who had achieved a target LDL-C level <130 mg/dL after completing an 8-week, open-label, run-in period with LIPITOR 10 mg/day. Subjects were randomly assigned to either 10 mg/day or 80 mg/day of LIPITOR and followed for a median duration of 4.9 years. The primary endpoint was the time-to-first occurrence of any of the following major cardiovascular events (MCVE): death due to CHD, non-fatal myocardial infarction, resuscitated cardiac arrest, and fatal and non-fatal stroke. The mean LDL-C, TC, TG, non-HDL, and HDL cholesterol levels at 12 weeks were 73, 145, 128, 98, and 47 mg/dL during treatment with 80 mg of LIPITOR and 99, 177, 152, 129, and 48 mg/dL during treatment with 10 mg of LIPITOR. Treatment with LIPITOR 80 mg/day significantly reduced the rate of MCVE (434 events in the 80 mg/day group vs. 548 events in the 10 mg/day group) with a relative risk reduction of 22%, HR 0.78, 95% CI (0.69, 0.89), p=0.0002 (see Figure 3 and Table 6). The overall risk reduction was consistent regardless of age ($<65, \ge65$) or gender. Figure 3: Effect of LIPITOR 80 mg/day vs. 10 mg/day on Time to Occurrence of Major Cardiovascular Events (TNT) **TABLE 8. Overview of Efficacy Results in TNT** | Endpoint | Atorvastatin
10 mg
(N=5006) | | Atorvastatin
80 mg
(N=4995) | | HR ^a (95%CI) | |---|-----------------------------------|--------|-----------------------------------|--------|-------------------------| | PRIMARY ENDPOINT | n | (%) | n | (%) | | | First major cardiovascular endpoint | 548 | (10.9) | 434 | (8.7) | 0.78 (0.69, 0.89) | | Components of the Primary Endpoint | | | | | | | CHD death | 127 | (2.5) | 101 | (2.0) | 0.80 (0.61, 1.03) | | Non-fatal, non-procedure related MI | 308 | (6.2) | 243 | (4.9) | 0.78 (0.66, 0.93) | | Resuscitated cardiac arrest | 26 | (0.5) | 25 | (0.5) | 0.96 (0.56, 1.67) | | Stroke (fatal and non-fatal) | 155 | (3.1) | 117 | (2.3) | 0.75 (0.59, 0.96) | | SECONDARY ENDPOINTS* | | | | | | | First CHF with hospitalization | 164 | (3.3) | 122 | (2.4) | 0.74 (0.59, 0.94) | | First PVD endpoint | 282 | (5.6) | 275 | (5.5) | 0.97 (0.83, 1.15) | | First CABG or other coronary revascularization procedure ^b | 904 | (18.1) | 667 | (13.4) | 0.72 (0.65, 0.80) | | First documented angina endpoint ^b | 615 | (12.3) | 545 | (10.9) | 0.88 (0.79, 0.99) | | All-cause mortality | 282 | (5.6) | 284 | (5.7) | 1.01 (0.85, 1.19) | | Components of All-Cause Mortality | | | | | | | Cardiovascular death | 155 | (3.1) | 126 | (2.5) | 0.81 (0.64, 1.03) | | Noncardiovascular death | 127 | (2.5) | 158 | (3.2) | 1.25 (0.99, 1.57) | | Cancer death | 75 | (1.5) | 85 | (1.7) | 1.13 (0.83, 1.55) | | Other non-CV death | 43 | (0.9) | 58 | (1.2) | 1.35 (0.91, 2.00) | | Suicide, homicide, and othertraumatic non-CV death | | (0.2) | 15 | (0.3) | 1.67 (0.73, 3.82) | ^a Atorvastatin 80 mg: atorvastatin 10 mg HR=hazard ratio; CHD=coronary heart disease; CI=confidence interval; MI=myocardial infarction; CHF=congestive heart failure; CV=cardiovascular; PVD=peripheral vascular disease; CABG=coronary artery bypass graft Confidence intervals for the Secondary Endpoints were not adjusted for multiple comparisons Of the events that comprised the primary efficacy endpoint, treatment with LIPITOR 80 mg/day significantly reduced the rate of non-fatal, non-procedure related MI and fatal and non-fatal stroke, but not CHD death or resuscitated cardiac arrest (Table 6). Of the predefined secondary endpoints, treatment with LIPITOR 80 mg/day significantly reduced the rate of coronary revascularization, angina, and hospitalization for heart failure, but not peripheral vascular disease. The reduction in the rate of CHF with hospitalization was only observed in the 8% of patients with a prior history of CHF. There was no significant difference between the treatment groups for all-cause mortality (Table 8). The proportions of subjects who experienced cardiovascular death, including the components of CHD death and fatal stroke, were numerically smaller in the LIPITOR 80 mg group than in the LIPITOR 10 mg treatment group. The proportions of subjects who experienced noncardiovascular death were numerically larger in the LIPITOR 80 mg group than in the LIPITOR 10 mg treatment group. In the Incremental Decrease in Endpoints Through Aggressive Lipid Lowering Study (IDEAL), treatment with LIPITOR 80 mg/day was compared to treatment with simvastatin 20–40 mg/day in 8,888 subjects up to 80 years of age with a history of CHD to assess whether reduction in CV risk could be achieved. Patients were mainly male (81%), white (99%) with an average age of 61.7 years, and an average LDL-C of 121.5 mg/dL at randomization; 76% were on statin therapy. In this prospective, randomized, open-label, blinded endpoint (PROBE) trial with no run-in period, subjects were followed for a median duration of 4.8 years. The mean LDL-C, TC, TG, HDL, and non-HDL cholesterol levels at Week 12 were 78, 145, 115, 45, and 100 mg/dL during treatment with 80 mg of LIPITOR and 105, 179, 142, 47, and 132 mg/dL during treatment with 20–40 mg of simvastatin. ^b Component of other secondary endpoints ^{*} Secondary endpoints not included
in primary endpoint There was no significant difference between the treatment groups for the primary endpoint, the rate of first major coronary event (fatal CHD, non-fatal MI, and resuscitated cardiac arrest): 411 (9.3%) in the LIPITOR 80 mg/day group vs. 463 (10.4%) in the simvastatin 20–40 mg/day group, HR 0.89, 95% CI (0.78, 1.01), p=0.07. There were no significant differences between the treatment groups for all-cause mortality: 366 (8.2%) in the LIPITOR 80 mg/day group vs. 374 (8.4%) in the simvastatin 20–40 mg/day group. The proportions of subjects who experienced CV or non-CV death were similar for the LIPITOR 80 mg group and the simvastatin 20–40 mg group. ## 14.2 Hyperlipidemia and Mixed Dyslipidemia LIPITOR reduces total-C, LDL-C, VLDL-C, apo B, and TG, and increases HDL-C in patients with hyperlipidemia (heterozygous familial and nonfamilial) and mixed dyslipidemia (*Fredrickson* Types IIa and IIb). Therapeutic response is seen within 2 weeks, and maximum response is usually achieved within 4 weeks and maintained during chronic therapy. LIPITOR is effective in a wide variety of patient populations with hyperlipidemia, with and without hypertriglyceridemia, in men and women, and in the elderly. In two multicenter, placebo-controlled, dose-response studies in patients with hyperlipidemia, LIPITOR given as a single dose over 6 weeks, significantly reduced total-C, LDL-C, apo B, and TG. (Pooled results are provided in Table 9.) TABLE 9. Dose Response in Patients With Primary Hyperlipidemia (Adjusted Mean % Change From Baseline)^a | Dose | N | TC | LDL-C | Аро В | TG | HDL-C | Non-HDL-C/ HDL-C | |---------|----|-----|-------|-------|-----|-------|------------------| | Placebo | 21 | 4 | 4 | 3 | 10 | -3 | 7 | | 10 | 22 | -29 | -39 | -32 | -19 | 6 | -34 | | 20 | 20 | -33 | -43 | -35 | -26 | 9 | -41 | | 40 | 21 | -37 | -50 | -42 | -29 | 6 | -45 | | 80 | 23 | -45 | -60 | -50 | -37 | 5 | -53 | ^a Results are pooled from 2 dose-response studies. In patients with *Fredrickson* Types IIa and IIb hyperlipoproteinemia pooled from 24 controlled trials, the median (25th and 75th percentile) percent changes from baseline in HDL-C for LIPITOR 10, 20, 40, and 80 mg were 6.4 (-1.4, 14), 8.7 (0, 17), 7.8 (0, 16), and 5.1 (-2.7, 15), respectively. Additionally, analysis of the pooled data demonstrated consistent and significant decreases in total-C, LDL-C, TG, total-C/HDL-C, and LDL-C/HDL-C. In three multicenter, double-blind studies in patients with hyperlipidemia, LIPITOR was compared to other statins. After randomization, patients were treated for 16 weeks with either LIPITOR 10 mg per day or a fixed dose of the comparative agent (Table 10). TABLE 10. Mean Percentage Change From Baseline at Endpoint (Double-Blind, Randomized, Active-Controlled Trials) | Treatment | | | | | | | Non-HDL-C/ | |------------------------------|-----|------------------|------------------|------------------|------------------|-----------|------------------| | (Daily Dose) | N | Total-C | LDL-C | Apo B | TG | HDL-C | HDL-C | | Study 1 | | | | | | | | | LIPITOR 10 mg | 707 | -27ª | -36ª | -28 ^a | -17 ^a | +7 | -37ª | | Lovastatin 20 mg | 191 | -19 | -27 | -20 | -6 | +7 | -28 | | 95% CI for Diff ¹ | | -9.2, -6.5 | -10.7, -7.1 | -10.0, -6.5 | -15.2, -7.1 | -1.7, 2.0 | -11.1, -7.1 | | Study 2 | | | | | | | | | LIPITOR 10 mg | 222 | -25 ^b | -35 ^b | -27 ^b | -17 ^b | +6 | -36 ^b | | Pravastatin 20 mg | 77 | -17 | -23 | -17 | -9 | +8 | -28 | | 95% CI for Diff ¹ | | -10.8, -6.1 | -14.5, -8.2 | -13.4, -7.4 | -14.1, -0.7 | -4.9, 1.6 | -11.5, -4.1 | | Study 3 | | | | | | | | | LIPITOR 10 mg | 132 | -29° | -37° | -34° | -23° | +7 | -39° | | Simvastatin 10 mg | 45 | -24 | -30 | -30 | -15 | +7 | -33 | | 95% CI for Diff ¹ | | -8.7, -2.7 | -10.1, -2.6 | -8.0, -1.1 | -15.1, -0.7 | -4.3, 3.9 | -9.6, -1.9 | | | | | | • | | | | ¹ A negative value for the 95% CI for the difference between treatments favors LIPITOR for all except HDL-C, for which a positive value favors LIPITOR. If the range does not include 0, this indicates a statistically significant difference. The impact on clinical outcomes of the differences in lipid-altering effects between treatments shown in Table 10 is not known. Table 10 does not contain data comparing the effects of LIPITOR 10 mg and higher doses of lovastatin, pravastatin, and simvastatin. The drugs compared in the studies summarized in the table are not necessarily interchangeable. ## 14.3 Hypertriglyceridemia The response to LIPITOR in 64 patients with isolated hypertriglyceridemia (*Fredrickson* Type IV) treated across several clinical trials is shown in the table below (Table 11). For the LIPITOR-treated patients, median (min, max) baseline TG level was 565 (267–1502). TABLE 11. Combined Patients With Isolated Elevated TG: Median (min, max) Percentage Change From Baseline | | Placebo | LIPITOR 10 mg | LIPITOR 20 mg | LIPITOR 80 mg | |---------------|---------------------|----------------------|----------------------|----------------------| | | (N=12) | (N=37) | (N=13) | (N=14) | | Triglycerides | -12.4 (-36.6, 82.7) | -41.0 (-76.2, 49.4) | -38.7 (-62.7, 29.5) | -51.8 (-82.8, 41.3) | | Total-C | -2.3 (-15.5, 24.4) | -28.2 (-44.9, -6.8) | -34.9 (-49.6, -15.2) | -44.4 (-63.5, -3.8) | | LDL-C | 3.6 (-31.3, 31.6) | -26.5 (-57.7, 9.8) | -30.4 (-53.9, 0.3) | -40.5 (-60.6, -13.8) | | HDL-C | 3.8 (-18.6, 13.4) | 13.8 (-9.7, 61.5) | 11.0 (-3.2, 25.2) | 7.5 (-10.8, 37.2) | | VLDL-C | -1.0 (-31.9, 53.2) | -48.8 (-85.8, 57.3) | -44.6 (-62.2, -10.8) | -62.0 (-88.2, 37.6) | | non-HDL-C | -2.8 (-17.6, 30.0) | -33.0 (-52.1, -13.3) | -42.7 (-53.7, -17.4) | -51.5 (-72.9, -4.3) | # 14.4 Dysbetalipoproteinemia The results of an open-label crossover study of 16 patients (genotypes: 14 apo E2/E2 and 2 apo E3/E2) with dysbetalipoproteinemia (*Fredrickson* Type III) are shown in the table below (Table 12). ^a Significantly different from lovastatin, ANCOVA, p ≤0.05 ^b Significantly different from pravastatin, ANCOVA, p ≤0.05 ^c Significantly different from simvastatin, ANCOVA, p ≤0.05 TABLE 12. Open-Label Crossover Study of 16 Patients With Dysbetalipoproteinemia (Fredrickson Type III) | | | Median % Change (min, max) | | | | |----------------|----------------------|----------------------------|----------------|--|--| | | Median (min, max) at | LIPITOR | LIPITOR | | | | | Baseline (mg/dL) | 10 mg | 80 mg | | | | Total-C | 442 (225, 1320) | -37 (-85, 17) | -58 (-90, -31) | | | | Triglycerides | 678 (273, 5990) | -39 (-92, -8) | -53 (-95, -30) | | | | IDL-C + VLDL-C | 215 (111, 613) | -32 (-76, 9) | -63 (-90, -8) | | | | non-HDL-C | 411 (218, 1272) | -43 (-87, -19) | -64 (-92, -36) | | | # 14.5 Homozygous Familial Hypercholesterolemia In a study without a concurrent control group, 29 patients ages 6 years to 37 years with HoFH received maximum daily doses of 20 to 80 mg of LIPITOR. The mean LDL-C reduction in this study was 18%. Twenty-five patients with a reduction in LDL-C had a mean response of 20% (range of 7% to 53%, median of 24%); the remaining 4 patients had 7% to 24% increases in LDL-C. Five of the 29 patients had absent LDL-receptor function. Of these, 2 patients also had a portacaval shunt and had no significant reduction in LDL-C. The remaining 3 receptor-negative patients had a mean LDL-C reduction of 22%. ## 14.6 Heterozygous Familial Hypercholesterolemia in Pediatric Patients In a double-blind, placebo-controlled study followed by an open-label phase, 187 boys and post-menarchal girls 10 years to 17 years of age (mean age 14.1 years) with heterozygous familial hypercholesterolemia (HeFH) or severe hypercholesterolemia, were randomized to LIPITOR (n=140) or placebo (n=47) for 26 weeks and then all received LIPITOR for 26 weeks. Inclusion in the study required 1) a baseline LDL-C level ≥ 190 mg/dL or 2) a baseline LDL-C level ≥ 160 mg/dL and positive family history of FH or documented premature cardiovascular disease in a first or second-degree relative. The mean baseline LDL-C value was 218.6 mg/dL (range: 138.5–385.0 mg/dL) in the LIPITOR group compared to 230.0 mg/dL (range: 160.0–324.5 mg/dL) in the placebo group. The dosage of LIPITOR (once daily) was 10 mg for the first 4 weeks and uptitrated to 20 mg if the LDL-C level was > 130 mg/dL. The number of LIPITOR-treated patients who required uptitration to 20 mg after Week 4 during the double-blind phase was 78 (55.7%). LIPITOR significantly decreased plasma levels of total-C, LDL-C, triglycerides, and apolipoprotein B during the 26-week double-blind phase (see Table 13). TABLE 13. Lipid-altering Effects of LIPITOR in Adolescent Boys and Girls with Heterozygous Familial Hypercholesterolemia or Severe Hypercholesterolemia (Mean Percentage Change From Baseline at Endpoint in Intention-to-Treat Population) | DOSAGE | N | Total-C | LDL-C | HDL-C | TG | Apolipoprotein B | |---------|-----|---------|-------|-------|-------|------------------| | Placebo | 47 | -1.5 | -0.4 | -1.9 | 1.0 | 0.7 | | LIPITOR | 140 | -31.4 | -39.6 | 2.8 | -12.0 | -34.0 | The mean achieved LDL-C value was 130.7 mg/dL (range: 70.0-242.0 mg/dL) in the LIPITOR group compared to 228.5 mg/dL (range: 152.0-385.0 mg/dL) in the placebo group during the 26-week double-blind phase. Atorvastatin was also studied in a three year open-label, uncontrolled trial that included 163 patients with HeFH who were 10 years to 15 years old (82 boys and 81 girls). All patients had a clinical diagnosis of HeFH confirmed by genetic analysis (if not already confirmed by family history). Approximately 98% were Caucasian, and less than 1% were Black or Asian. Mean LDL-C at baseline was 232 mg/dL. The starting atorvastatin dosage was 10 mg once daily and doses were adjusted to achieve a target of < 130 mg/dL LDL-C. The reductions in LDL-C from baseline were generally consistent across age groups within the trial as well as with previous clinical studies in both adult and pediatric placebo-controlled trials. The long-term efficacy of LIPITOR therapy
in childhood to reduce morbidity and mortality in adulthood has not been established. # 16 HOW SUPPLIED/STORAGE AND HANDLING 10 mg tablets (10 mg of atorvastatin): coded "10" on one side and "ATV" on the other. 20 mg tablets (20 mg of atorvastatin): coded "20" on one side and "ATV" on the other. 40 mg tablets (40 mg of atorvastatin): coded "40" on one side and "ATV" on the other. 80 mg tablets (80 mg of atorvastatin): coded "80" on one side and "ATV" on the other. Blister packs containing 10, 30, 50, and 100 film-coated tablets. Not all pack sizes may be marketed. # Storage Store below 25°C # Shelf life The expiry date of the product is indicated on the packaging materials # License Holder Pfizer PFE Pharmaceuticals Israel Ltd 9 Shenkar St Herzliya Pituach Revised in 02/2022